Oseltamivir Resistance in Influenza A(H6N2) Caused by an R292K Substitution in Neuraminidase Is Not Maintained in Mallards without Drug Pressure

نویسندگان

  • Anna Gillman
  • Shaman Muradrasoli
  • Andreas Mårdnäs
  • Hanna Söderström
  • Ganna Fedorova
  • Max Löwenthal
  • Michelle Wille
  • Annika Daggfeldt
  • Josef D. Järhult
  • Kevan Hartshorn
چکیده

BACKGROUND Wild waterfowl is the natural reservoir of influenza A virus (IAV); hosted viruses are very variable and provide a source for genetic segments which can reassort with poultry or mammalian adapted IAVs to generate novel species crossing viruses. Additionally, wild waterfowl act as a reservoir for highly pathogenic IAVs. Exposure of wild birds to the antiviral drug oseltamivir may occur in the environment as its active metabolite can be released from sewage treatment plants to river water. Resistance to oseltamivir, or to other neuraminidase inhibitors (NAIs), in IAVs of wild waterfowl has not been extensively studied. AIM AND METHODS In a previous in vivo Mallard experiment, an influenza A(H6N2) virus developed oseltamivir resistance by the R292K substitution in the neuraminidase (NA), when the birds were exposed to oseltamivir. In this study we tested if the resistance could be maintained in Mallards without drug exposure. Three variants of resistant H6N2/R292K virus were each propagated during 17 days in five successive pairs of naïve Mallards, while oseltamivir exposure was decreased and removed. Daily fecal samples were analyzed for viral presence, genotype and phenotype. RESULTS AND CONCLUSION Within three days without drug exposure no resistant viruses could be detected by NA sequencing, which was confirmed by functional NAI sensitivity testing. We conclude that this resistant N2 virus could not compete in fitness with wild type subpopulations without oseltamivir drug pressure, and thus has no potential to circulate among wild birds. The results of this study contrast to previous observations of drug induced resistance in an avian H1N1 virus, which was maintained also without drug exposure in Mallards. Experimental observations on persistence of NAI resistance in avian IAVs resemble NAI resistance seen in human IAVs, in which resistant N2 subtypes do not circulate, while N1 subtypes with permissive mutations can circulate without drug pressure. We speculate that the phylogenetic group N1 NAs may easier compensate for NAI resistance than group N2 NAs, though further studies are needed to confirm such conclusions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resistance Mutation R292K Is Induced in Influenza A(H6N2) Virus by Exposure of Infected Mallards to Low Levels of Oseltamivir

Resistance to neuraminidase inhibitors (NAIs) is problematic as these drugs constitute the major treatment option for severe influenza. Extensive use of the NAI oseltamivir (Tamiflu®) results in up to 865 ng/L of its active metabolite oseltamivir carboxylate (OC) in river water. There one of the natural reservoirs of influenza A, dabbling ducks, can be exposed. We previously demonstrated that a...

متن کامل

Tamiflu in the Water Resistance Dynamics of Influenza A Virus in Mallards Exposed to Oseltamivir

Gillman, A. 2016. Tamiflu in the Water. Resistance Dynamics of Influenza A Virus in Mallards Exposed to Oseltamivir. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1184. 114 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9484-1. The natural reservoir of influenza A virus (IAV) is wild waterfowl, and all human IAVs have their genetic origins f...

متن کامل

Influenza A(H7N9) virus gains neuraminidase inhibitor resistance without loss of in vivo virulence or transmissibility

Without baseline human immunity to the emergent avian influenza A(H7N9) virus, neuraminidase inhibitors are vital for controlling viral replication in severe infections. An amino acid change in the viral neuraminidase associated with drug resistance, NA-R292K (N2 numbering), has been found in some H7N9 clinical isolates. Here we assess the impact of the NA-R292K substitution on antiviral sensit...

متن کامل

R292K Substitution and Drug Susceptibility of Influenza A(H7N9) Viruses

Neuraminidase inhibitors are the only licensed antiviral medications available to treat avian influenza A(H7N9) virus infections in humans. According to a neuraminidase inhibition assay, an R292K substitution reduced antiviral efficacy of inhibitors, especially oseltamivir, and decreased viral fitness in cell culture. Monitoring emergence of R292K-carrying viruses using a pH-modified neuraminid...

متن کامل

Determination of Oseltamivir Resistance Level by an H275Y Genotyping Assay among Influenza A (H1N1) Viruses in Hamadan Province, Iran

Introduction: Epidemics and deaths caused by influenza viruses are an important concern worldwide. The use of neuraminidase inhibitors such as oseltamivir is an effective and valuable way to treat the diseases caused by these viruses. However, the mutation in several parts of the gene leads to the emergence of drug-resistant strains, and an ever-increasing rise in drug-resistant strains is a gl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015